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Abstract

X We present an asymptotically optimal algorithm to locate all the axes of mirror symmetry of a planar point
set. The algorithm was derived by reducing the 2-D symmetry problem to linear pattern-matching. Optimal
algorithms for finding rotational symmetries and deciding whether a point symmetry exists are also presented.
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1. Introduction
A sct of points P in the planc has an axis of mirror symmetry A when for cvery point p of P not lying on A
I there is another point p' in P s.t. A is the perpendicular bisector of the line pp !, P has a rotational symmetry
N of a when rotating P about its centroid C by a is an identity operation on P. P has a point symmetry (which
must be at C) precisely when P has a rotational symmetry of w .

This note presents an optimal O(n log n) algorithm for discovering all the mirror symmetries of an n point
sct P in detail and describes the changes needed to detect the rotational symmetries (and hence the existence
of a point symmetry). Lower bounds are shown for each problem. Mirror symmetries are the objects of

T IS

interest until section S.

C— VT,

The 2-D mirror symmetry problem is reduced to a 1-D pattern-matching problem for which fast solutions
are well-known. Any A must pass through the centroid C of P, so the points are first translated so that (0,0)
corresponds to C. After expressing the points in polar coordinates, sort them increasing-distance-within-
increasing angle from a reference direction. For each unique angle (at most n), replace the set of points
residing at that angle (i.e., > 1 point) by a tuple which is simply a list of their distance components. Let the
number of unique angles be m (< n). Consider the result as a length 2m string F, the symbols of which are
alternately tuples and the angles between adjacent tuples. The mirror symmetries of P correspond exactly to
the length 2m subsequences of FF which are palindromes.

L e

The palindromes can be discovered by a fast one-dimensional string matching algorithm, looking for
occurrences of the reversal of F in FF. One such algorithm is that of Knuth, Morris and Pratt [1} ("KMP")
which permits the detection of all occurrences of a patfern within a rext in time proportional to the sum of the
lengths of the text and pattern.

Section 2 of this report contains the algorithm, and section 3 contains proof of why the \algon’thm works. in S
section 4 ;ve demonstrate;bmat it is impossible to improve the asymptotic time bound.ﬂin Section S wq\present“
a variant of the basic algorithm which detects the rotational symmetries and point symmetry, and a proof that
these are also optimal. (_.,-,ﬂ_
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2. Algorithm
Input : n point planar point set P, ( p, for i =0(1)n-1).

QOutput : The centroid of P and the orientations of cach of its axes of mirror symmetry.

1. Find the centroid C of P. Translate the point set so that the origin coincides with C.

2. Sclcct an arbitrary reference direction (for convenience we choose the direction of Py ). Represent
the points in polar coordinates with the angle componcn: as mcasured anticlockwisc from the
reference dircction, denote point p; as (7, .0 A

3. Sort the points by increasing-distance-within-increasing-angle. Delcte any points that have zero
distance (r,;=0). Let the number of different anglesbem < n.

4, For each of the m different angles, represcent its set of points in a single uple ., which simply holds
the set of distances at that angle. Beginning at the reference direction, proceed through the list of
tuples in order of increasing angle, gencrating the length 2m string F : at the current position
append the tuple to the string; move to the next tuple, appending the angle traversed to the string.
Finish when returning to the reference dircction. The first element of this string is a tuple, angles
and tuples alternate within it. Create the length 2m string R and the length 4m-2 string F’ as
shown below:

F=ff..f,,

R=ff  fnomf
' -
| I A N

5. Employ a string-matching algorithuin such as KMP to locate ail of the matches of R in F ! . From
the definition of F the only matches are possible beginning at even indices (since fo is a tuple).
Denote the size t (0 < t < m) list of indices of F/ at which a match can begin by Ij(j =0(1) t-1).

6. Compute for each match index | J the orientation of an axis of mirror symmetry A 4 Letk = 1 ’ /2,

k is even => A passes through tuple f, .
] J k;

k,isodd =) A bisectsanglef, .
J J k

3. Details

In this section we demonstrate that there is a 1:1 mapping between the axes of mirror symmetry of the point .
set and the successful matches of R in F/ ., We also derive the formula for finding the orientation of the
corresponding axis from a match.

A palindrome is a string of symbols with the property that in whichever direction it is read, it will give the
same string, 08 ~Sp1 = Sp1 515 An -palindrome is a string with the property that if the symbol with
index iis deleted and the left remaining substring is appended to the right of the right remaining substring,

then the new string is a palindrome, s, _, .S, so....s,,l = 888 -8,




CHRC AN S Bt &4 ban St Shen e d e e

Because thie tuples do not necessarily have a unique distance associated with them, we can consider the st
of tuples {fu. for i = 0 to m-1} as laid out on the perimeter of a circle (diameter unimportant, centre at the
centroid of the point sct), with tuples fzi and fZ,. +2 scparated by the angle f2,. 41 Tuples me,z and fo are
separated by angle qurl . The axes of this representation are precisely the axes of the original point set

The notation uscd is that of the algorithm of section 2. F = £, f, .. £, . where m is the number of tuples
and an eicment f, is either an angle (fis odd), or a tuple (/is even). R = fo me_] me.z - f,. and
F/ = fofy - fomy fofy~ fom - We say that R matches F/ at index i when the length 2m substring of F/
f,.. f‘Zm_1 fy - f;., macwhes R. For all such matches i must be even because f; is a tuple and the tuples all

appear with even index in F,

LEMMA Forany k(0 < k<m): Fisa k -palindrome iff’ R matches F/ atindex 2k.
Define substrings,

a=f -0, (Length k-1)

=M b (Length 2m-2k -1)

ay=f.f, (Length k)

by=f,-~f (Length k-1)

b =0~ fak 41 (Length 2m-2k -1)

b3=f7.k"'fk+l (Length k)

When F is a k-palindrome and k< m we know that fk 41 - f,., is a palindrome. More specifically,
3 faa,=bfbb;. Therefore f,, = f;, 3, =b, .3, = b,. and a, = b, using the substring lengths
given above,

When R matches F/ at index 2k we know £ 2 ay foa = fobybyfi b, . The equivalences here are again
fu= t‘o.a1 = bl.az= b,,anda, = b,.

Because the equivalences enforced are the same in both cases the two situations are the same.

When an axis A passes through a tuple le' then F is a 2/-palindrome. Similarly, if A bisects the angle
fu +1 then F is a (2i +1)-palindrome.




LEMMA For any k(0 € k<m): F is a k-palindrome iff.k is even and there is an axis A passing
through tuplc fk , Or k is odd and there is an axis A bisccting the angle fk .

There are two cascs to censider,

e kisodd. Let k = 2i +1. ThatF is a(2i +1)-palindrome is precisely the condition brought about
by A bisecting angle le. -

o kiseven. Let k = 2i. That F is a 2i-palindrome is precisely the condition brought about by A
passing through tuple fz: .

We have shown by the two lemmas that for any & (0 < k< m), there is an axis A passing through tuple fk (k
is even), or an axis A bisccting angle fk (k is odd) precisely when there is a match for R in F/ atindex 2k. It
remains to point out that this is sufficient to capture all axes because an axis A must cut the circle at two points
# apart and in having & range from 0 to m-1 we have covered a complete semi-circle.

4. Complexity .

In this section we show that the complexity of the algorithm presented in Section 2 matches that of the
problem and so is optimal, i.e., the algorithm is O(n log n) and the problem is shown to be Q(n log n). To
show the latter we use a reduction of the set equivalence problem to that of deciding whether there is or is not
an axis of mirror symmetry in a planar point set. This also shows that it is no harder to find all the axes of
mirror symmetry than it is to find whether there are any at all.

From the description of the algorithm in section 2 we can see that it is O(n log n), and this derives from the
sorting operation of Step 3. Steps 1,2.4 and 6 are clearly O(n) while Step 5 can be done in O(n) time using a
string matching algorithm such as KMP. The worst-case complexity of the KMP algorithm is not affected by
alphabet size.

Given two sets of n real numbers we wish to decide whether or not they are the same. This problem is
known to be O(n log n) work.

Call the sets A and B and then proceed as follows:
1. Find the lowest value L  in A and the lowest value Lgin B.

2 Create the set A/ from A by adding the elementa- L to A ! for each ain A. Similarly create B’/

T




from B using /..

3. Manufacture the 21D point set P defined as {(@.a):a€ A '} Uiw,-b):be B3.

4. Find the axes of mirror symmoctry of the sct P. If P has an axis of mirror symmetry then A and B
are the same, else they are not.

The set P defined above will have at most onc axis of mirror symunetry and this if present will correspond to

the "x-axis’ of the 2D system created.

5. Rotational and point symmetries
In this section we present a version of the algorithm of section 2 which will find all the rotational
symmetries of point set P. Hence, as noted in the introduction, we will also have discovered whether the set

has a point-symmetry because that is identical to a rotational symmetry of = .

A rotational symmetry is an angle a s.t. rotation of P by a about its centroid is an identity operation on P.
Furthermore, if a, is the smallest such angle then the set of angles of rotational symmetry is precisely the set

of integer multiples of a, . Hence, it is only necessary to find a,.

Given the string representation F of P, proceed by matching F against F/ starting with the first element of
Fat f, and moving to the right. This avoids a meaningless match of F with itsclf as prefix of F/ and because
angle a corresponds to the lowest index at which F will match F/. Stop when the first match is found (or a
failure occurred at the end of F/ , implying no rotations). Let 'the index of the match in F/ be i, which must
be even as before. The corresponding a, is the sum of the angles in F/ lying to the left of the match,
a,=f+f+..6,.

The complexity of this algorithm is the same as that of the mirror symmetry algorithm, O(n log n).
Checking whether a, is an integer divisor of o is constant time work and so O(n log n) applies to the point

symmetry decision too.

We now show that deciding whether P is point-symmetric is Q(n log n) and so the algorithm above for
rotational symmetry and point symmetry is optimal. As in section 4, use the problem of deciding whether the
two sets A and B are identical. We show that this is no harder than deciding if P is point-symmetric by the
following algorithm:

1. Find the lowest value L y in A and the lowest value L B in B.

2. Create the set A/ from A by adding the elementa- L, to A/ for each ain A. Similarly create B/
from B using L B




3. Manufacture the 2-D point sct P defined as {(a.a):a€ A’} U {(-b.-b): be B'}.

4. Decide whether P is point-symmetric, if it is then A and B are the same, clse they are not.
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